Reproducir audio a través del DAC del Teensy 
El procesador ARM Cortex-M4 (Un MK20DX256 de Freescale) incluido en la placa de desarrollo Teensy 3.1 viene equipado con una salida analógica (DAC, no PWM) de 12 bits de resolución con la que es posible generar audio con una calidad razonable y sin apenas hardware externo.

Punto de partida

Se parte del compilador gcc, las binutils y la newlib compilados para el target “arm-none-eabi” detallados en este post y del trabajo realizado anteriormente en este otro post.

DAC

El DAC del microcontrolador Freescale MK20DX256 tiene una resolución de 12 bits (sin signo) y puede ser utilizado tanto de forma sencilla como mediante DMA. En este caso se va a optar por un uso sencillo sin DMA: La escritura de los datos de las muestras la hará el propio código del programa.

...
#define  SIM_SCGC2    *((uint32_t *) 0x4004802C)
#define  DACDAT       *((uint16_t *) 0x400CC000)
#define  DAC0_C0      *((uint8_t *)  0x400CC021)
#define  DAC0_C1      *((uint8_t *)  0x400CC022)
...
SIM_SCGC2 |= (1 << 12);   // habilitar el generador de reloj para el DAC
DAC0_C1 = 0x00;           // deshabilitar el modo DMA para el DAC
DAC0_C0 = 0xC0;           // habilitar el DAC para VREF2 (3.3v)
// a partir de ahora ya se puede escribir en el DAC (DACDAT)
...

Hay que tener en cuenta que el registro DACDAT es un registro de 12 bits sin signo (unsigned).

Systick

La interrupción “systick” es una de las interrupciones estándar del núcleo ARM Cortex-M4 (de hecho está presente en todos los procesadores ARM Cortex). Se trata de una interrupción que se dispara cuando un contador de 24 bits llega a cero, dicho contador está gobernado por el reloj del núcleo (cuidado, suele ser diferente al reloj del bus) y carece de divisores (es muy simple).

El vector de la interrupción se encuentra en la dirección de memoria 0x0000003C. En esta dirección de memoria debe alojarse la dirección de memoria donde se encuentre la función que se ejecutará cada vez que el systick llegue a cero y vuelva a cargarse (una indirección).

Para implementar esta funcionalidad con el GCC se modifica el linker script (teensy31.ld) para incluir el nuevo vector de interrupción:

...
. = 0x00000000 ;
.cortex_m4_vectors : {
    LONG(0x20007FFC);
    LONG(0x00000411);
}
. = 0x0000003C ;
.cortex_m4_vector_systick : {
    LONG(SYSTICK_ADDRESS + 1);
}
. = 0x00000400 ;
.flash_configuration : {
    LONG(0xFFFFFFFF);
    LONG(0xFFFFFFFF);
    LONG(0xFFFFFFFF);
    LONG(0xFFFFFFFE);
}
...

Y para incluir una nueva sección dentro de la memoria de programa con una dirección de memoria prefijada:

...
SYSTICK_ADDRESS = . ;
.systick : {
    *(.systick)
}
...

Nótese que la dirección de memoria almacenada en 0x0000003C es la siguiente dirección impar después de SYSTICK_ADDRESS. Esto tiene una explicación y es muy sencilla:

Los procesadores ARM soportan dos repertorios de instrucciones: un repertorio muy amplio y potente en el que cada instrucción ocupa 32 bits (modo “arm”) y otro repertorio más reducido en el que cada instrucción ocupa 16 bits (modo “thumb”). El primero es más potente pero ocupa más, mientras que el segundo en menos potente pero ocupa mucho menos. Lo que se puede hacer en modo “arm” se puede hacer también en modo “thumb” aunque es posible que para hacer lo que hace una instrucción “arm” sean necesarias dos o tres instrucciones “thumb”.

La forma en que un procesador ARM sabe si una instrucción a la que apunta el PC forma parte de un repertorio de instrucciones u otro es mediante el bit 0 del PC. Si el bit 0 vale 0, se trata de una instrucción “arm”, mientras que si el bit vale 1 se trata de una instrucción “thumb” (nótese que sea cual sea el modo, todas las instrucciones se encuentran, como mínimo, en direcciones pares, en las direcciones impares nunca hay instrucciones).

Por otro lado según la especificación ARM, las excepciones (interrupciones) se deben ejecutar siempre en modo “thumb”. De todas formas en este caso no tenemos elección ya que la serie Cortex-M de ARM sólo soporta el repertorio de instrucciones “thumb” (http://infocenter.arm.com/help/index.js ... BIBGJ.html).

Con la nueva sección de código llamada “.systick” en el código fuente puede ahora definirse la función que va a manejar la interrupción:

...
#define  SYST_CSR  *((uint32_t *) 0xE000E010)
#define  SYST_RVR  *((uint32_t *) 0xE000E014)
#define  SYST_CVR  *((uint32_t *) 0xE000E018)
#define  SAMPLE_RATE  44100

// indicamos al compilador que queremos alojar el cuerpo de esta función en la sección “.systick”
void systick()  __attribute__ ((section(".systick")));

void systick() {
    // TODO
}
...

...
// configuramos el systick para que se ejecute SAMPLE_RATE veces por segundo
SYST_RVR = F_CPU / SAMPLE_RATE;
SYST_CVR = 0;
SYST_CSR |= 0x07;
...

F_CPU es la velocidad en Hz del núcleo (en este caso 96 MHz = 96000000 Hz) y hacemos que el systick se ejecute 44100 veces por segundo (la frecuencia de muestreo del sonido a reproducir).

No se debe utilizar el atributo “interrupt” al declarar la función “systick” ya que en ese caso el compilador intenta compilarla en modo “arm” en lugar de “thumb”.

Sonido

Partiendo de uno de los sonidos (un bucle de bateria) publicado con licencia Creative Commons Attribution-ShareAlike por el usuario de Soundcloud “Phantom Hack3r” (AKA Loop Studio, https://soundcloud.com/phantom-hack3r) se ha editado, se ha dejado sólo con un único compás (el inicial) y se ha exportado a WAV (“drum_loop_1.wav”).

A continuación, usando la herramienta de línea de comandos, “sox” se exporta a su vez este fichero WAV a un formato crudo de 8 bits, mono y sin signo:
sox drum_loop_1.wav -u -b 8 -c 1 -r 44100 drum_loop_1.raw
Luego el fichero drum_loop_1.raw se convierte a un fichero objeto para meterlo como si fuese código dentro del microcontrolador:
/opt/teensy/bin/arm-none-eabi-objcopy --input binary --output elf32-littlearm --binary-architecture arm --rename-section .data=.text drum_loop_1.raw drum_loop_1.o
La opción “--rename-section .data=.text” es muy importante ya que marca los datos generados para que se alojen en la sección “.text” del fichero de salida. Esta sección es la sección que será alojada en la memoria flash del Teensy.

Ahora en “drum_loop_1.o” hay definidas dos variables “_binary_drum_loop_1_raw_start” y “_binary_drum_loop_1_raw_end” cuya dirección de memoria es el inicio y el final respectivamente de los datos crudos convertidos (“drum_loop_1.raw”).

Circuito de salida

A la hora de conectar la salida analógica del DAC a unos altavoces hay que hacerlo siempre a través de un amplificador ya que la corriente máxima que soporta la salida DAC es muy baja. De entre todas las opciones de amplificación, la más sencilla es, sin duda, el uso de unos altavoces amplificados de PC (solución sugerida por el propio creador del Teensy, Paul Stoffregen, aquí).



Se trata de un sencillo condensador electrolítico (para el desacoplo de continua) entre la salida del DAC y la entrada del amplificador de altavoces.

Resultado final

El código fuente final de main.cc es el siguiente:

#include <stdint.h>

using namespace std;

#define  SYST_CSR  *((uint32_t *) 0xE000E010)
#define  SYST_RVR  *((uint32_t *) 0xE000E014)
#define  SYST_CVR  *((uint32_t *) 0xE000E018)

#define  SIM_SCGC2    *((uint32_t *) 0x4004802C)
#define  DACDAT       *((uint16_t *) 0x400CC000)
#define  DAC0_C0      *((uint8_t *)  0x400CC021)
#define  DAC0_C1      *((uint8_t *)  0x400CC022)
#define  SAMPLE_RATE  44100

extern char _binary_drum_loop_1_raw_start;
extern char _binary_drum_loop_1_raw_end;
volatile char *p;

void systick()  __attribute__ ((section(".systick")));

void systick() {
    DACDAT = ((uint16_t) *p) << 4;
    p++;
    if (p == &_binary_drum_loop_1_raw_end)
        p = &_binary_drum_loop_1_raw_start;
}

int main() {
    // configure DAC
    SIM_SCGC2 |= (1 << 12);    // enable DAC clock generator
    DAC0_C1 = 0x00;            // disable DAC DMA
    DAC0_C0 = 0xC0;            // enable DAC for VREF2 (3.3v)
    // configure SYSTICK
    p = &_binary_drum_loop_1_raw_start;
    SYST_RVR = F_CPU / SAMPLE_RATE;
    SYST_CVR = 0;
    SYST_CSR |= 0x07;
    while (1)
        ;
}

A continuación un vídeo donde puede verse (y oírse) el montaje en funcionamiento.



Todo el código fuente puede descargarse de la sección soft.

[ añadir comentario ] ( 1801 visualizaciones )   |  [ 0 trackbacks ]   |  enlace permanente  |   ( 3 / 14659 )

<< <Anterior | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Siguiente> >>