El modelado de masas interconectadas con muelles es muy utilizado para la simulación de sistemas físicos y de otras estructuras dinámicas. Plantearemos las ecuaciones diferenciales básicas y a continuación realizaremos una implementación numérica mediante el método de Euler.
La teoría.
La fuerza que actúa sobre un punto $\vec{p}_i$ se puede definir, según la primera ley de Newton, como:
$$\vec{F}_i = m_i \vec{a}_i$$
Si despejamos la aceleración nos queda:
$$\vec{a}_i = {1 \over m_i} \vec{F}_i$$
Como la aceleración es la derivada de la velocidad con respecto al tiempo:
$${d\vec{v}_i \over dt} = {1 \over m_i} \vec{F}_i$$
Teniendo en cuenta que la fuerza total aplicada sobre el punto $\vec{p}_i$ es la suma de cada una de las fuerzas aplicadas en ese punto:
$${d\vec{v}_i \over dt} = {1 \over m_i} \sum\limits_j \vec{F}_{ij}$$
Siendo $\vec{F}_{ij}$ la fuerza aplicada en el punto $\vec{p}_i$ por parte del muelle que conecta dicho punto al punto $\vec{p}_j$. Desarrollando la ecuación anterior utilizando la ley de Hooke para el cálculo de $\vec{F}_{ij}$, obtenemos el siguiente sistema de ecuaciones diferenciales:
$${d\vec{v}_i \over dt} = {1 \over m_i} \sum\limits_j (k_{mij} \vec{e}_{ij} - k_{aij}(\vec{v}_i - \vec{v}_j))$$
$${d\vec{p}_i \over dt} = \vec{v}_i$$
Siendo:
$\vec{p}_i$ = El vector posición del punto $i$.
$\vec{v}_i$ = El vector velocidad del punto $i$ (derivada de $\vec{p}_i$ con respecto al tiempo).
$\vec{v}_j$ = El vector velocidad del punto $j$ (derivada de $\vec{p}_j$ con respecto al tiempo).
$\vec{e}_{ij}$ = El vector elongación del punto $i$ con respecto al punto $j$.
$m_i$ = La masa del punto $i$.
$k_{mij}$ = La constante del muelle que une los puntos $i$ y $j$.
$k_{aij}$ = La constante del amortiguador que une los puntos $i$ y $j$.
En esta ecuación, $k_{mij} \vec{e}_{ij}$ es la fuerza del muelle puro y $k_{aij}(\vec{v}_i - \vec{v}_j)$ es la fuerza del amortiguador.
El vector de elongación $\vec{e}_{ij}$ se calcula de la siguiente manera:
Siendo $l_{rij}$ la longitud, en reposo, del muelle que une los puntos $\vec{p}_i$ y $\vec{p}_j$.
Si $Distancia(\vec{p}_i, \vec{p}_j) < l_{rij}$, entonces $\vec{e}_{ij}$ es el vector unitario que va de $\vec{p}_j$ a $\vec{p}_i$.
Si $Distancia(\vec{p}_i, \vec{p}_j) > l_{rij}$, entonces $\vec{e}_{ij}$ es el vector unitario que va de $\vec{p}_i$ a $\vec{p}_j$.
Si $Distancia(\vec{p}_i, \vec{p}_j) = l_{rij}$, entonces $\vec{e}_{ij} = (0, 0)$.
El sumatorio debe recorrer todos los $j$ que representen puntos unidos al punto $i$ mediante un muelle.
Para implementar las ecuaciones diferenciales se puede aplicar el método de Euler (tiene un buen comportamiento para intervalos de $t$ pequeños y constantes y es múy fácil de programar aunque el error es un poco alto). Lo que se suele recomendar en foros de programación es el método de Runge-Kutta de cuarto orden: no es complicado de implementar y tiene un error razonablemente bajo.
Implementación mediante el método de Euler.
Para una ecuación diferencial de la siguiente forma:
$${dy \over dt} = f(t, y)$$
Podemos aproximar de forma numérica la integral resultante:
$$y=\int f(t, y)dt$$
mediante la siguiente ecuación de recurrencia:
$$y_{n+1} = y_n + hf(t_n, y_n)$$
Siendo $h$ el ancho del intervalo de integración en el tiempo (cuando más chico mejor). Si integramos el sistema de ecuaciones diferenciales del sistema de puntos unidos por muelles:
$$\vec{v}_i = \int {1 \over m_i} \sum\limits_j (k_{mij} \vec{e}_{ij} - k_{aij}(\vec{v}_i - \vec{v}_j))dt$$
$$\vec{p}_i = \int \vec{v}_i dt$$
podemos aplicar el método de Euler de forma directa:
$$\vec{v}_i[n+1] = \vec{v}_i[n] + h{1 \over m_{i}} \sum\limits_j (k_{mij}\vec{e}_{ij}[n] - k_{aij}(\vec{v}_i[n] - \vec{v}_j[n]))$$
$$\vec{p}_i[n+1] = \vec{p}_i[n] + h \vec{v}_i[n]$$
$h$ es el ancho en segundos de cada intervalo de simulación. Esta $h$ se puede calcular de la siguiente manera:
$$h = {1 \over fps}$$
Siendo $fps$ la tasa de refresco en frames por segundo.
En esta web he implementado en javascript y HTML5 un pequeño sistema de cuatro masas unidas por muelles. Haciendo click con el ratón se pueden mover las masas e interactuar con el sistema.
Lo sentimos. No se permiten nuevos comentarios después de 90 días.